

PRODUCT BROCHURE

Thoraflex[™] Hybrid

Conforming Arch Surgery to the Gold Standard

Gold Standard, Surgical Confidence

Deliver proven outcomes when treating your patient's complex aortic arch pathology, utilizing innovative Terumo Aortic Hybrid Solutions.

Years of Clinical data 8.1%

30 Day Mortality Rate 4 Acute Thoracic Aortic Syndrome (5/62 Patients)

100%

Gelatin Sealed Gelweave™ surgical graft and polyester stent graft

30 Day Mortality Rate 4

(Total 9/181 patients)

Polyester Graft

- Gelatin sealed (hydrolysis <14 days)
- ▶ Effective & easy suturing ¹
- ▶ Easy to handle ¹
- ▶ Gelatin: lower thrombogenic potential ² (than unsealed polyester grafts)
- ▶ High resistance to dilation at 2 years³

Supra-Aortic Branches

- Plexus design
- Replacement of dissected vessels
- ▶ 12/8/10mm or 10/8/8mm

Antegrade Perfusion Branch

▶ Facilitates organ perfusion and rewarming 5

Pre-attached Collar

- ▶ Easier/safer Anastomosis ⁵
- ▶ Reduced Haemodynamic traction ⁵

Tantalum Radiopaque Markers

- Stent: Endovascular extension markers (20mm increments)
- Graft: 2x branch markers

Independent Ring-Stent Design

- Anatomic Conformability 6
- Minimizes risk of intimal injury 6
- ▶ Induces downstream remodelling ⁷
- Structural support for Gelatin Sealed endovascular fabric
- 1. Adachi et al. (1996) 'Clinical Experience of a New Gelatin Impregnated Woven Dacron Graft.' Japan Journal of Artificial Organs, 25 (1), pp214-219.

 2. Drury et al. (1987) 'Experimental and Clinical Experience with a Gelatin Impregnated Dacron Prosthesis.' Annals of Vascular Surgery, 1, pp542-547.
- 3. Mattens et al. (1999) 'Gelseal® Versus Gelweave® Dacron Prosthetic Grafts in the Descending Thoracic Aorta: A Two-Year Computed Tomography Scan Follow-Up Study.' Cardiovascular Surgery, 7 (4), pp432-435.

Flexible & Compact Delivery System

Intuitive design with enhanced deployment performance for accurate positioning.

- 1 RELEASE WIRE CLIP
 - Designed to detach graft from delivery system
- 4 SHEATH SPLITTER
 - Atraumatic blades (top/bottom)
 - ▶ Rapid release suture system
- 7 ATRAUMATIC TIP
 - ▶ 30F diameter (10mm)

- 2 HANDLE
 - Control during deployment
 - Visualization of operating field
- 5 PTFE SHEATH (30F)
 - ▶ Peelable/Splittable Sheath
 - Split-Lines to facilitate deployment
- 8 (2X) 0.035" GUIDEWIRE ACCESS PORTS
 - Delivery system introduction
 - ▶ Accurate placement of stent

- 3 STRAP HANDLE
 - Attached to sheath
 - Pull to start graft deployment
- 6 MALLEABLE SHAFT
 - Adaptable to patient anatomy
 - Can be reshaped

^{4.} Results from Thoraflex Hybrid Post-Market Study (THOR) - NCT03414866 (unpublished).

^{5.} Ruggieri et al. (2015) 'Multibranched hybrid device for frozen elephant trunk: what does it change?' Journal of Thoracic & Cardiovascular Surgery, 15 (1), 253-255.

^{6.} Ma et al. (2015) 'Open Stented Grafts for Frozen Elephant Trunk Technique: Technical Aspects and Current Outcomes.' AORTA, 3 (4), pp122-135

^{7.} Berger et al. (2018) 'True-lumen and false-lumen diameter changes in the downstream aorta after frozen elephant trunk implantation.' European Journal of Cardiothoracic Surgery, 54, pp375–381.

Versatility in Treatment

Plexus and Ante-Flo™ designs enable a choice of surgical techniques and widen the treatable patient population.

Offering Plexus & Ante-Flo Configurations

- ▶ Thoraflex™ Hybrid Plexus configuration facilitates individual arch vessel reconstruction 8
- ► Thoraflex[™] Hybrid Ante-Flo[™] configuration facilitates the island technique ⁹

Thoraflex™ Hybrid is designed for the open surgical repair of aneurysms and/or dissections in the aortic arch and descending aorta with or without involvement of the ascending aorta.

100% False Lumen **Thrombosis** (within 2 years) 10 at the level of the stent graft

Single-Stage Operation Potential for the Patient 11

Size Options Multiple configurations offer optimal outcomes to a wider patient population

Island/En Bloc Re-implantation of SAT SAT = Supra-Aortic Trunk

7one 3 Standard technique

Zone 2 Distal LSA anastomosis LSA = Left Subclavian Artery

7one 0/1 Proximal anastomosis

- 8. Di Marco et al. (2017) 'The frozen elephant trunk technique: European Association for Cardio-Thoracic Surgery Position and Bologna experience.' Korean Journal Thoracic &
- Cardiovascular Surgery, 50, pp1-7.

 9. Coselli et al. (2024) 'Total aortic arch replacement using a frozen elephant trunk device: Results of a 1-year US multicenter trial', The Journal of Thoracic and Cardiovascular Surgery-Adult Aorta, 167 (5) pp1-12.

^{10.} Shrestha et al. (2016) 'Total aortic arch replacement with a novel 4-branched frozen elephant trunk prosthesis: single-centre results of the first 100 patients.' Journal of Thoracic & Cardiovascular Surgery, 152 (1), pp148-159.

Thinking Ahead

With up to 33% FET repairs needing a future downstream intervention,¹² utilizing Relay®Pro in conjunction with Thoraflex™ Hybrid is indicated for on-label distal endovascular repair.

Relay®**Pro** offers the ideal endovascular solution to treat FET patients with more extensive disease, by virtue of:

- ▶ NBS (non-bare stent) configuration
- ▶ Low profile delivery system

Use of Relay®Pro subject to local regulatory approval

CT Image courtesy of Marco Di Eusanio; Lancisi Cardiovascular Center Ancona, Italy

"Downstream TEVAR following the FET procedure is associated with excellent clinical outcomes. We thus maintain that staging thoracic aortic repair - FET and secondary TEVAR - is a very successful and safe strategy..." 13

DISCOVER MORE Features and Benefits of Thoraflex™ Hybrid

Features and Benefits:

terumoaortic.com/features-benefits

Discover how each of the key features and benefits are integrated into every one of our products to ensure the highest quality and performance possible.

DURABILITY & RELIABILITY

SAFETY & EFFICACY

ADAPTABILITY & VERSATILIT

FLEXIBILITY

PRECISION

DESIGN

^{11.} Mariscalco et al (2019), "Reflection from UK Aortic Group: Frozen Elephant Trunk Technique as Optimal Solution in Type A Acute Aortic Dissection." Seminars in Thoracic Surgery 31, pp686–690.

^{12.} Kreibich et al. (2020) 'Aortic reinterventions after the frozen elephant trunk procedure.' The Journal of Thoracic and Cardiovascular Surgeny', 159 (2), pp392-399.

^{13.} Kreibich et al. (2022) 'Downstream thoracic endovascular aortic repair following zone 2, 100mm stent graft frozen elephant trunk implantation.' Interactive CardioVascular and Thoracic Surgery, 34 (6), pp1141-1146.

Plexus Product Ordering Information

Catalogue Number Explanation

100mm Stent Length

150mm Stent Length

Catalogue Number	Graft ID - D1 (mm)	Stent-graft OD - D2 (mm)	Catalogue Number	Graft ID - D1(mm)	Stent-graft OD - D2 (mm)
THP2224 x 100A*	22	24	THP2224 x 150A*	22	24
THP2426 x 100A*	24	26	THP2426 x 150A*	24	26
THP2628 x 100A	26	28	THP2628 x 150A	26	28
THP2830 x 100A	28	30	THP2830 x 150A	28	30
THP3032 x 100A	30	32	THP3032 x 150A	30	32
THP3034 x 100A	30	34	THP3034 x 150A	30	34
THP3036 x 100A	30	36	THP3036 x 150A	30	36
THP3038 x 100A	30	38	THP3038 x 150A	30	38
THP3040 x 100A	30	40	THP3040 x 150A	30	40
THP3240 x 100A	32	40	THP3240 x 150A	32	40

^{*} The branches on THP2224x100A, THP2426x100A, THP2426x100A, THP2224x150A and THP2426x150A are as follows: 10mm, 8mm & 8mm. (All other sizes have standard branch diameter configurations: 12mm, 8mm & 10mm)

Stent-graft nominal length 100mm / 150mm

Note: drawing not to scale

Ante-Flo[™] Product Ordering Information

Catalogue Number Explanation

100mm Stent Length

Catalogue Number	Graft ID - D1(mm)	Stent-graft OD - D2 (mm)
THA2224 x 100A	22	24
THA2426 x 100A	24	26
THA2628 x 100A	26	28
THA2830 x 100A	28	30
THA3032 x 100A	30	32
THA3034 x 100A	30	34
THA3036 x 100A	30	36
THA3038 x 100A	30	38
THA3040 x 100A	30	40
THA3240 x 100A	32	40

150mm Stent Length

Catalogue Number	Graft ID - D1 (mm)	Stent-graft OD - D2 (mm)
THA2224 x 150A	22	24
THA2426 x 150A	24	26
THA2628 x 150A	26	28
THA2830 x 150A	28	30
THA3032 x 150A	30	32
THA3034 x 150A	30	34
THA3036 x 150A	30	36
THA3038 x 150A	30	38
THA3040 x 150A	30	40
THA3240 x 150A	32	40

Stent-graft nominal length 100mm / 150mm

Note: drawing not to scale

Committed to Aortic Care

Discover solutions for every segment of the aorta terumoaortic.com

View IFU at eifu.terumoaortic.com for more information on use, indications, contraindications and warnings/precautions.

Product availability subject to local regulatory approval.

For distributor information, visit terumoaortic.com/contact

■ Vascutek Ltd. Newmains Avenue, Inchinnan, Renfrewshire PA4 9RR, United Kingdom